
1

Radmind and Solaris

2

Introduction

3

What is radmind?

• Suite of tools for managing filesystems
• Useful applications:

– tripwire
– software distribution
– centralized management

4

Terminology
• transcript

– text file describing a filesystem
• negative transcript

– transcript listing filesystem objects which are not managed
• loadset

– combination of a transcript and corresponding files stored on the server
• special file

– file unique to a particular host
• command file

– list of transcripts and special files which describe a filesystem
• overload

– transcript of higher precedence

A transcript line looks like this:
f ./.cshrc 0644 0 0 1037045508 422
R9H4noBZLdJoZg8QJ8RMLr1lUCM=

The first character describes the type of filesystem object (in this case a file). Next is the path
to the object. We use relative pathing in our transcripts (note the leading dot), which allows us
to do things like boot from a CD and install on a mount point. Next are the permissions in
octal form (0644), followed by the uid and gid. Finally, if the object is a file we have the file
size and an optional checksum (in this example, an sha1 checksum).

For an example of a negative transcript, see
http://rsug.itd.umich.edu/~sweda/negative.txt

5

Commands
• Client tools

– ktcheck
– fsdiff
– lapply
– lcreate
– twhich
– lfdiff

• Server tools
– radmind (daemon)
– lmerge
– lcksum

ktcheck - used to compare the command file & transcripts on the client to the server
fsdiff - output a difference transcript, which describes either
 1) a list of changes to make the filesystem match the transcript, we call this an “apply-able
transcript” because lapply is usually run afterwards
 2) a list of changes to make the transcript match the filesystem, we call this a “create-able
transcript” because lcreate is usually run afterwards
lapply - used to apply changes to a filesystem
lcreate - used to upload a transcript to the server
twhich - used to determine which transcript contains a filesystem object
lfdiff - used to show the differences between a file on the client and the server

radmind - daemon which runs on server
lmerge - used to combine two or more loadsets into a new loadset
lcksum - used to verify/update the checksums in the transcript

6

Theory
• complexity v. time

– complexity generally driven
by client diversity

– find the optimum balance
for your client base

• practical limitations
– some filesystem areas too

volatile to be managed
– pick your battles

T

C

Complexity v. Time
 The reason for deploying a tool like radmind is to save the system administrator time over
the long run. This chart describes how the complexity of your loadsets can affect the amount
of time you spend with administrative tasks. With a very simple loadset (e.g. one large
transcript) you can spend a lot of time updating clients for which the change is unimportant or
irrelevant. In the opposite direction, with a very complex set of loadsets (e.g. one transcript
for each software package) the process of updating your loadsets on the server can become
tedious. In our experience, the complexity of your loadsets should be driven by the diversity
of your clients. As you use radmind you should continually examine your complexity, striving
for an optimum balance for your client base.

Practical Limitations
 An important thing to understand about radmind is that you must make decisions on which
areas of the filesystem you will not manage. While radmind can be a used as a tripwire, it can
only be successful in this regard with files whose contents remain static. Some areas of the
filesystem (e.g. /var/log) are extremely volatile and cannot be managed by radmind, yet these
same areas might be a very common place for an intruder to make changes. Therefore, as an
administrator you need to balance the utility of tripwire against the necessity of having
negative filesystem objects.
 Often you will have to decide whether or not the frequency of change for some files makes it
worth the effort to manage them. For example, we do not manage the password or group files
with radmind. Sometimes Solaris will make things difficult for you as well, as in the case of
/etc/coreadm.conf, which is rebuilt during the boot process. Our suggestion is to pick your
battles so that tripwire output is not repetitive, and generally indicates an issue which should
be dealt with promptly.

7

Issues

• updates
– “push” v. “pull”

• tripwire
– frequency
– notification
– user privileges

• staff conflicts

Updates
 It is important to realize that radmind updates are always a “pull”, i.e. the update process is
run on the client. Therefore, when we discuss “push” versus “pull”, we are talking about
whether the client initiates updates on its own (pull) or whether updates are initiated by human
intervention (push). You will need to decide if you want your clients to automatically update
themselves over some time interval, or if all updates will be “pushed out” by an administrator
logging in to each machine and running your update process.

Tripwire
 If you use radmind as a tripwire you will need to make some decisions as to the frequency of
your filesystem checks. Running tripwire with checksums enabled does have an impact on the
performance of the system, especially with checksums enabled. You will also need to decide
who gets notified of tripwire output, as well as who is responsible for resolving it. The
number of users who are allowed to modify the system will play a role in determining this, as
difficulties can arise when those who install/update software are unaware of tripwire.

Staff Conflicts
 Once you start delegating tasks to different staff members you will run into the issue of
trying to keep people from interfering with the work of others. At a minimum you should
develop a procedure which will prevent updates from overwriting work in progress.

8

RSUG Implementation

9

Logical Separations
• Solaris 8 base load

– sol8-pos.T
• packages & drivers for all deployed hardware types

– sol8-neg.T
• files/directories we do not manage

– sol8-rc.T
• Sun supplied init scripts we modify or remove

• RSUG deployed software
– sol8-local.T

• class overloads
– sol8-imap.T

• service specific software (e.g. imapd)
– sol8-imap-blade.T

• files/links specific to hw class (e.g. /dev links)

10

Working Environment
• ownership

– radmind account on server, use ‘su’
– radmind daemon runs as radmind user
– RCS check-in/check-out

• tripwire
– twice a day (7am/7pm)

• updates
– ssh master
– radmin script
– conflict avoidance

Ownership
 Initially RSUG tried to manage files on the radmind server with group permissions.
However, this quickly became problematic, as often new files were created without the proper
permissions. Our solution was to create a radmind account to own all of the server files. The
radmind daemon runs as this user, so that all uploaded files have the proper ownership.
Administrators ‘su’ to the radmind account in order to make changes. We use RCS to manage
all of the transcripts and command files so that we can log our changes.

Tripwire
 We run tripwire twice a day, once in the morning and once in the evening. The idea is to
avoid running tripwire at times where staff is likely to be making changes, while minimizing
the amount of time that tripwire output is unresolved.

Updates
 RSUG policy is for all updates to be initiated by staff rather than to use automatic updates.
In order to simplify the update process, we designate one machine in each class to be the “ssh
master”. The root account on this host has a trust relationship established via a public/private
key combination, allowing root to remotely execute our update script on each client.
 Both tripwire and updates are handled by a shell script named “radmin”. The radmin script
also has a mechanism whereby staff can mark a machine as being exempt from the update
process. This allows our staff to compile, install, and test new software without worry that
someone may be pushing out updates at the same time.

11

Benefits

• homogenous environment
• download/compile/install once
• installation via boot CD
• deployment schedule accelerated
• re-tasking simplified

12

Nuts & Bolts
– sol8-neg.T example

• http://rsug.itd.umich.edu/~sweda/negative.txt

– hardware overload example
• http://rsug.itd.umich.edu/~sweda/hw-oload.txt

– adding new classes of hardware
• http://rsug.itd.umich.edu/~sweda/newhw.txt

– TLS and certs
• http://rsug.itd.umich.edu/software/radmind/files/radmind-tls-0.9.1.pdf

– tiered command files
• http://rsug.itd.umich.edu/~sweda/m4.html

