
USENIX Association

Proceedings of the 17th Large Installation
Systems Administration Conference

San Diego, CA, USA
October 26–31, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Radmind: The Integration of
Filesystem Integrity Checking with

Filesystem Management
Wesley D. Craig and Patrick M. McNeal – The University of Michigan

ABSTRACT

We review two surveys of large-scale system management, observing common problems
across tools and over many years. We also note that filesystem management tools interfere with
filesystem integrity checking tools. Radmind, an integrated filesystem management and integrity
checking tool, solves many of these problems. Radmind also provides a useful platform upon
which to build further large-scale, automatic system management tools.

Introduction

We present ‘‘Radmind,’’ an open source suite of
Unix command-line tools and a server designed to
remotely administer the filesystems of multiple,
diverse Unix machines. At its core, Radmind checks
filesystem integrity. Like Tripwire [Spafford], it is
able to detect changes to any managed filesystem
object. Radmind, though, goes further than just
integrity checking. Files are stored on a remote server
so that Radmind can reverse changes if filesystem
integrity is lost. Changes can be made to managed
machines by updating files on the Radmind server.

Each managed machine may have its own load-
set composed of multiple, layered overloads. Over-
loads consist of a list of filesystem objects and any
associated file data. This allows, for example, the
operating system to be described separately from soft-
ware packages.

One of the great strengths of Radmind is that it
does not enforce a management ideology. It allows a
system administrator to manage many machines using
roughly the same skill set she already uses to manage
one machine. It also provides a useful filesystem
integrity check that neither undermines nor is under-
mined by filesystem management.

State of the Art

In the recently published ‘‘Experiences and Chal-
lenges of Large-Scale System Configuration,’’ Ander-
son, et al. [Anderson 03] review several large-scale
system management tools: SUE [CERN], cfengine
[Burgess], LCFG [Anderson 02], and several ad hoc
solutions. They identify several common problems:

• There is no method to determine that a running
node has diverged from its specification. Without
this information, the only option is to reinstall.

• The complexity of existing configuration tools
requires extensive knowledge, above what may
be expected of a newly hired but experienced
system administrator.

• New operating systems and new operating sys-
tem versions are a major problem.

• Server management is typically ad hoc, not part
of the large-scale configuration management
system.

• There is no support for disconnected nodes,
e.g., laptops.

Seven years earlier in ‘‘An Analysis of UNIX Sys-
tem Configuration,’’ [Evard 97] Evard describes many of
these same problems. He also notes that large-scale con-
figuration management has been ‘‘an area of exploration
for at least ten years.’’ While many sophisticated tools
have been made available in the last seventeen years, the
same problems are still prevalent.

Also of note is the degree to which filesystem
integrity checking conflicts with these system man-
agement tools. Groups like SANS and CERT list
filesystem integrity checking as one of the basic pro-
cedures that all system administrators should use to
help secure their computers. However, if a cluster is
running both a filesystem integrity tool for intrusion
detection and, e.g., rsync [Tridgell] for software
updates, each time an update occurs, every machine
will report a security event. For large clusters, these
reports are noise in which real problems may be lost
[Arnold]. In order to update the managed systems
without triggering security events, the system manage-
ment tool must be aware of (or integrated with) the
intrusion detection tool.

Integrating intrusion detection with system man-
agement affords several additional capabilities that
make it attractive. While filesystem integrity checking
tools detect the changes that an attacker has made to
the filesystem, they can also detect certain types of
data corruption caused by operating system and hard-
ware errors, e.g., a flaky disk driver or controller.
Because filesystem integrity checking tools scan virtu-
ally all of the nonvolatile filesystem, they detect the
changes that the system administrator makes as well.
For example, they can detect what ‘‘make install’’ has
done, or RPM [Bailey] , or even ‘‘vi.’’ Once captured,

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 1

Radmind: The Integration of Filesystem Integrity Checking with Filesystem Management Craig & McNeal

this information can be propagated by the system
administrator to manage an entire cluster of machines.

Synctree [Lockard], also written at the Univer-
sity of Michigan, is able to leverage filesystem
integrity information for the purpose of system man-
agement. However, Synctree requires AFS as a file
transfer mechanism and requires AFS system:admin-
istrator (‘‘root’’ in AFS) access. In a non-AFS envi-
ronment, it would be an excessive burden to bring up
an AFS cell just for system management. Moreover, a
non-AFS-dependent mechanism would be required to
securely manage the AFS servers.

Despite Synctree’s shortcomings and minimal
adoption, it demonstrates that combining integrity
checking with filesystem management is a viable
methodology. Below, we demonstrate the advantages
of this methodology and how it can be used to resolve
the issues that have been plaguing automatic system
administration for nearly two decades.

f ./sbin/sysctl 0555 0 0 1045172329 8528 a2FJsCY7WuLXpD9+aXuMg0SNHEI=

l ./sbin/telinit init

h ./sbin/tune2fs ./sbin/e2label

d ./usr 0755 0 0

d ./usr/bin 0755 0 0

f ./usr/bin/a2p 0755 0 0 1045106607 108986 l5KLWOZMf1IUNWVQv74Aa2LIbi0=

f ./usr/bin/addftinfo 0755 0 0 1045104969 120007 Fwt4ugxLLEuR4oYYdO0NuATEHQg=

f ./usr/bin/addr2line 0755 0 0 1045107072 368836 DJAI24VhbFHUGkAGYRXlEejxc68=

3 5 6 7

8 9421

Figure 1: Fragment of a Linux From Scratch base transcript. 1. File type. Shown are regular files (f), a symbolic
link (l), a hard link (h), and directories (d). 2. Pathname. Transcripts are sorted by pathname. 3. Link target. 4.
Mode, listed in octal. 5. Owner ID. 6. Group ID. 7. mtime. 8. Size in bytes. 9. Base64 encoded SHA-1 crypto-
graphic checksum.

Divergence
Because Radmind includes a filesystem integrity

checking tool, fsdiff (filesystem difference), that traverses
the nonvolatile portions of the filesystem, it is possible at
any time to compare a live node with a well-defined spec-
ification. Any modifications, additions or deletions to the
local filesystem are reflected in the output of fsdiff. There-
fore, it is possible to determine a priori the correctness of
a node. When a node diverges from its specification the
system administrator has the option to audit the transcript
(Figure 1) of differences.

Wi t h o u t this information, the system is always
running in an indeterminate state. When the system
administrator responds to aberrant behavior from a par-
ticular node, she cannot distinguish intrusion, hardware

failure, software bugs, staff error, etc., from system
divergence. The only way to eliminate system diver-
gence as a possible source of error is to reinstall.

Radmind, on the other hand, can utilize a differ-
ence transcript to return the node to its specification.
A separate tool, lapply (loadset apply), reads a tran-
script and modifies the filesystem accordingly. lapply
removes, modifies and creates filesystem objects,
downloading files from a Radmind server as neces-
sary. Since the transcript lists only differences, lapply
makes the minimum changes required.

Interestingly, if the specification has changed, the
same procedure can be used to install updates onto
nodes. The specification consists of a series of transcripts
and a listing of their precedence, known as a command
file (Figure 2). The ktcheck (command file and transcript
check) tool calculates a checksum of the local copy of
the command file and transcripts, compares it with a
checksum returned by the Radmind server, and option-
ally updates the local copies. When ktcheck indicates
that the command file or transcripts have been updated,
differences from the specification are treated as inten-
tional updates rather than anomalies in the filesystem.
The ability to differentiate a system update from a secu-
rity event makes the security event reporting valuable,
particularly in a large-scale environment.

Complexity

Meta-configuration tools like LCFG, PAN
[Cons], and cfengine each implement their own
declarative language to manage the contents of config-
uration files. They do not directly address the manage-
ment of the remainder of the filesystem. For example,
cfengine deployments use other tools, e.g., RPM, to
manage system binaries. In order to use cfengine with

2 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Craig & McNeal Radmind: The Integration of Filesystem Integrity Checking with Filesystem Management

RPM, all software must be packaged, even if it is built
from source. Unfortunately, the system administrator
is then required to learn two complex applications and
is still unable to fully verify the integrity of the non-
volatile filesystem.

p lfs-base.T

n lfs-neg.T

p lfs-mail.T

s ./etc/sysconfig/network

s ./etc/sysconfig/network-devices/if config.eth0

2

31

Figure 2: Command file for a Linux From Scratch mail server. 1. Transcript type. Listed are positive transcripts (p),
a negative transcript (n), and special files (s). 2. Transcript name. 3. Special file pathname. Positive transcripts
list the managed portion of the filesystem. Negative transcripts define the unmanaged portions of the filesystem.
Transcripts are listed from lowest to highest precedence. The special transcript, built from the list of special
files, always has the highest precedence.

The above meta-configuration tools have seman-
tic knowledge of the contents of configuration files.
This implicit knowledge forces the system administra-
tor to use the tool’s language to update or create a con-
figuration file, preventing her from using her preferred
method. If the system administrator uses a tool like
Webmin [Cameron] in a cfengine environment,
cfengine will simply overwrite her changes. There is
no provision in cfengine for capturing complex
changes, saving them, and automatically incorporating
them into a given configuration.

In a Radmind environment, fsdiff is able to detect
any changes, regardless of how the changes were made.
This permits the system administrator to use whatever
tool is appropriate to make changes. A separate tool,
lcreate (loadset create), reads fsdiff’s output and stores
the transcript and any associated files to a Radmind
server (Figure 3). Once the loadset is on the server, the
system administrator can either merge the new loadset
into an existing loadset or treat it as an overload. By not
merging, the system administrator can easily test new
loadsets while retaining the option to back them out.
This allows a system administrator to manage a large
number of diverse machines using normal system
administration tools plus Radmind without requiring
additional scripting or programming.

Portability

During an operating system upgrade, configura-
tion files, system binaries, and the kernel are updated.
Tools like cfengine are unable to directly manage sys-
tem binaries and the kernel. This makes operating sys-
tem upgrades challenging. Since cfengine’s classes,

scripts and edits contain the semantics of the system
configuration files, adding support for new operating
systems often involves writing substantial new code.
Current meta-configuration tools support a limited
number of operating systems, and a system admin-
istrator must wait to deploy a new operating system
until its semantics have been incorporated. Once a ver-
sion of cfengine supports the target operating system,
the system administrator still must revise her site-spe-
cific cfengine scripts and configuration files.

By contrast, Radmind has no knowledge of the
contents of files. Files are instead treated as simple
byte-streams. Porting Radmind to new platforms is
easy, typically requiring only recompilation. In
unusual cases such as Mac OS X’s HFS+ multi-forked
files or Solaris ‘‘door ’’ files, support for new filesys-
tem objects may need to be added to the code base.

While treating managed files as byte-streams
greatly improves portability, it also has some draw-
backs. Some applications use a single file for configura-
tion, e.g., inetd uses /etc/inetd.conf. With Radmind, two
inetd.conf configurations that differ by only a single line
require two separate files. In an environment with even
moderate diversity, maintaining the common portions of
many inetd.conf files is a chore. There are many solu-
tions to this problem. xinetd [xinetd], for example, may
load the contents of a directory for its configuration.
This allows the common configuration to be shared
amongst a large number of machines with the differ-
ences represented by separate whole files. Or, to use
Radmind with traditional inetd, inetd’s startup script
could synthesize /etc/inetd.conf from a directory con-
taining inetd.conf fragments.

A common rationale for encoding the semantics
of configuration files into meta-configuration tools is
the ability to make a single change and affect an entire
infrastructure. For instance, one could specify that a

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 3

Radmind: The Integration of Filesystem Integrity Checking with Filesystem Management Craig & McNeal

machine should be an NTP server, and simultaneously
that other machines running multiple operating sys-
tems should use that NTP server. This ultra-abstract
configuration management is another source of com-
plexity and non-portability inherent in meta-configura-
tion tools. The problem described above is more easily
managed by removing the configuration to a service
location mechanism such as ZEROCONF [IETF],
DHCP, or DNS. Evard makes a similar observation,
advising system administrators to ‘‘migrate changes
into the network and away from the host’’ [Evard 97].

ktcheck

Command
File

special.T

Local Diskfsdiff -A

Transcript

lapply

Server

Transcripts
Transcripts

Transcripts

ktcheck

Command
File

special.T

Local Disk fsdiff -C

Transcript

lcreate

Server

Transcripts
Transcripts

Transcripts

Figure 3: Overview of Radmind tools and data flow. Like many classic Unix tools, fsdiff’s input and output are in
the same format. fsdiff is able to output two types of transcripts, apply-able (left) and create-able (right). Apply-
able transcripts describe the changes needed to make a filesystem match a specification. Create-able transcripts
describe the changes needed to make a specification match a filesystem.

Servers

Large-scale configuration management tools are
most popular in computing clusters, labs, and other
environments where hardware and software diversity
is very low. However, even when widely deployed,
these systems are often not used to manage servers. As
an example, the 100 nodes of a computing cluster
might be managed while the two or three supporting
servers are built by hand. While it is easy to share one
image for all of the cluster nodes, existing tools have
difficulty managing the differences between servers
and between cluster nodes and servers.

With Radmind, fsdiff is able to automatically
detect and report the differences between machine
specifications. A system administrator can install a
server with the same base loadset as a compute node,
install additional software required for, e.g., NTP, and
capture those changes as an overload. This overload

plus the cluster base loadset can then be applied to any
machine to produce an NTP server.

When machines are exactly alike except for host-
specific files, an overload is not necessary. Such
machines can share one command file, listing the
appropriate transcripts and any special files. When
ktcheck runs, host-appropriate special files will be ref-
erenced. In this way, machines can share the bulk of
their specifications while retaining their individuality.

Laptops

Laptops are particularly challenging due to their
volatile network configuration. Mobile computers are
on the network only intermittently. Moreover, when
they are connected, the available bandwidth is often
low. Configuration management tools are also chal-
lenged by the potentially weak security of the network
and the fact that machines may need to be updated
from any IP-address.

Since all Radmind functions are initiated by the
managed machines, updates can be triggered by the
user when he knows that the network will be avail-
able. Moreover, the tools fail gracefully when the net-
work is unavailable. Radmind also minimizes network
traffic in the case where the loadset has not changed.
If changes are detected, Radmind transfers only the
necessary files.

For network security, Radmind supports SSL-
encrypted links. This allows nodes on insecure networks
to be updated securely. SSL certificates can also be used

4 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Craig & McNeal Radmind: The Integration of Filesystem Integrity Checking with Filesystem Management

to authenticate both the Radmind server and the man-
aged clients, regardless of DNS or IP-address variation.

Future Work

Radmind does not directly address the initial
installation of machines. Instead, most system admin-
istrators install a minimal operating system on each
machine before it can be managed with Radmind.
More sophisticated solutions are possible, e.g., using
PXE [Intel] or NetBoot [Apple]. In addition, work has
been done to create a ‘‘Radmind CD.’’ These CDs are
built from a production base loadset and an auto-
install overload. Using this methodology, creating new
CDs to support additional hardware is trivial.

Since Radmind only manages the filesystem, other
methodologies are required to manage the master boot
record of a machine, processes, etc. Any one of these
activities is relatively easy to layer on top of fsdiff,
either before or after lapply is run. It is difficult to auto-
matically determine all of the correct actions to take
when large filesystem changes are made. Tools like
sowhat [Couch] are helpful for determining interdepen-
dencies among filesystem objects, but again, leave much
manual work to the system administrator. Automatically
determining the correct order of process stops and starts
is nontrivial. Like automatic system administration in
general, this area is ripe for further exploration.

Conclusion

Radmind is an open source, complete solution to
the large-scale filesystem management problem. Its
external requirements are small, and the tools them-
selves are easy to use – there is no additional language
to learn. Radmind’s security is based on OpenSSL,
both for SSL/TLS encryption and authentication and
for support of cryptographic hash functions such as
SHA-1 and RIPEMD-160. Radmind is freely available
from http://radmind.org .

Author Information

We s l e y D. Craig joined the University of Michigan
in 1987, where he designed and wrote netatalk. He is
currently the Senior IT Architect and Engineer for the
University’s Research Systems UNIX Group where he
manages the team that runs the University’s central
LDAP directory, e-mail, and charged-for printing sys-
tems. Reach him electronically at wes@umich.edu .

Patrick M. McNeal earned his BSE in computer
engineering from the University of Michigan. Upon
graduation, he joined the University’s Research Systems
UNIX Group as a software engineer. He works on the
Radmind project along with other e-mail-related ser-
vices. Reach him electronically at mcneal@umich.edu .

References

[Anderson 02] Anderson, P. and A. Scobie, ‘‘LCFG –
The Next Generation,’’ UKUUG Winter Conference,
http://www.lcfg.org/doc/ukuug2002.pdf , 2002.

[Anderson 03] Anderson, P., G. Beckett, K. Kavous-
sanakis, G. Mecheneau, and P. Toft, ‘‘Experi-
ences and Challenges of Large-Scale System
Configuration.’’ GridWeaver Project, http://www.
epcc.ed.ac.uk/gridweaver/WP2/report2.pdf ,
March, 2003,

[Apple] Apple Computer, Inc. http://www.apple.com .
[Arnold] E. Arnold, ‘‘The Trouble With Tripwire:

Making a Valuable Security Tool More Efficient,’’
http://www.securityfocus.com/infocus/1398 , June
6, 2001.

[Bailey] Bailey, E., ‘‘Maximum RPM (RPM).’’
MacMillan Publishing Company, August, 1997.

[Burgess] Burgess, M. and R. Ralston, ‘‘Distributed
Resource Administration Using Cfengine,’’ Soft-
ware: Practice and Experience, Vol. 27, 1997.

[Camero] Camero, J., ‘‘Webmin: A Web-based System
Administration Tool for Unix,’’ Freenix 2000,
USENIX Annual Technical Conference, 2000.

[CERN] CERN, SUE, http://wwwpdp.web.cern.ch/
wwwpdp/ose/sue/doc/sue.html .

[Cons] Cons, L. and P. Poznanski, ‘‘Pan: A High-
Level Configuration Language,’’ Proceedings
LISA XVI, USENIX Association, 2002.

[Couch] Couch, Alva L., ‘‘Global Impact Analysis of
Dynamic Library Dependencies,’’ Proceedings
LISA XV, USENIX Association, 2001.

[Evard 97] Evard, R. ‘‘An Analysis of UNIX Machine
Configuration.’’ Proceedings LISA XI, USENIX
Association, 1997.

[IETF] IETF, Zeroconf Working Group, http://www.
ietf.org/html.charters/zeroconf-charter.html .

[Intel] Intel Corporation, ‘‘Preboot Execution Environ-
ment (PXE) Specification,’’ September 20, 1999.

[Lockard] Lockard, J. and J. Larke, ‘‘Synctree for Sin-
gle Point Installation, Upgrades, and OS
Patches,’’ Proceedings LISA XII, USENIX Asso-
ciation, 1998.

[RPM] RPM, http://www.rpm.org .
[Spafford] Kim, G. and E. Spafford, ‘‘Experiences

with TripWire: Using Integrity Checkers for
Intrusion Detection.’’ Proceedings System Admin-
istration, Networking, and Security, III, Usenix
Assoc., 1994.

[Tridgell] Tridgell, A. and P. Mackerras, ‘‘The rsync
Algorithm,’’ Australian National University, TR-
CS-96-05, June, 1996.

[xinetd] xinetd, http://www.xinetd.org .

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 5

6 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

